A Strategy to Protect Al₂O₃-based PFC Decomposition Catalyst from Deactivation

Xiu-Feng Xu,[†] Jong Yeol Jeon, Mi Hwa Choi, Hee Young Kim, Won Choon Choi, and Yong-Ki Park*

Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology,

P. O. Box 107, Yuseong, Daejeon 305-600, Korea

[†]Institute of Applied Catalysis, Yantai University, Yantai 264005, P. R. China

(Received November 29, 2004; CL-041443)

 γ -Al₂O₃ is one of the most active catalysts for hydrolytic decomposition of PFCs but it has been suffered from deactivation. The main reason for the deactivation was the transformation of catalytically active γ -phase into an inactive α -phase by the HF produced during the decomposition of PFCs. To prohibit the phase transformation, structure modifiers such as ZnAl₂O₄ and AlPO₄ were strongly required, which resulted in a remarkable catalyst durability.

Perfluorocompounds (PFCs) such as CF₄, C₂F₆, C₃F₈, SF₆, and NF₃ are used extensively as etching or cleaning gases in semiconductor or LCD processes. Because they are quite stable a temperature higher than 1000 °C is required for their thermal decomposition. Also, because of their high global warming potential (GWP) and long life time,^{1,2} their regulations become more and more strict and several types of abatement technologies such as direct/indirect incineration, plasma decomposition, and catalytic decomposition have been suggested. Among the suggested ones, catalytic decomposition has been regarded as the most promising one. However, because of the lack of catalyst durability its commercialization has been delayed.^{3–7} That is, γ -Al₂O₃ is known to be a most active catalyst for hydrolytic decomposition of PFCs but it has been suffered from rapid deactivation.^{8,9}

The main reason for the deactivation is thought to be the transformation of catalytically active γ -Al₂O₃ into inactive ones such as AlF₃ and α -Al₂O₃ by the HF produced in PFC decomposition process through the reaction of $1 \rightarrow 2 \rightarrow 3$.¹⁰

$$CF_4 + 2H_2O \rightarrow CO_2 + 4HF \tag{1}$$

$$\gamma - \text{Al}_2\text{O}_3 + 6\text{HF} \rightarrow 2\text{AlF}_3 + 3\text{H}_2\text{O}$$
(2)

$$2\text{AlF}_3 + 3\text{H}_2\text{O} \rightarrow \alpha - \text{Al}_2\text{O}_3 + 6\text{HF}$$
(3)

Recently, we found that the stabilities of γ -Al₂O₃ catalyst could be improved remarkably by the introduction of small amount of P or Zn as a structure modifier.¹¹ Therefore, in this paper, we tried to elucidate deactivation mode of γ -Al₂O₃ catalyst and suggest a strategy to prevent its deactivation.

Three types of catalysts were prepared and their catalytic activities were tested in a fixed bed reactor while flowing 7000ppm CF₄ and 34.5% water vapor at GHSV of $2000 h^{-1}$; (i) a bare γ -Al₂O₃ by calcining a boehmite (Condea Vista Co.) at 700 °C for 10 h and two modified ones by impregnating (ii) 10 mol % of Zn(NO₃)₂ (10% Zn/Al₂O₃) and (iii) 6 mol % of H₃PO₄ (6% AlPO₄/Al₂O₃) on γ -Al₂O₃. Initially all of the prepared catalysts revealed 100% CF₄ conversion but they revealed quite different time dependence (Figure 1). While the unmodified γ -Al₂O₃ deactivated rapidly within 15 h, no deactivations were observed over the 10% Zn/Al₂O₃ up to 50 h and over the 6% AlPO₄/

Figure 1. CF₄ conversion over (a) γ -Al₂O₃, (b) 10% Zn/Al₂O₃, (c) 6% AlPO₄/Al₂O₃, (d) ZnAl₂O₄, (e) AlPO₄, and (f) α -Al₂O₃ (reaction condition: 7000-ppm CF₄ and 34.5% H₂O in He balance, T = 750 °C, GHSV = 2000 h⁻¹).

 Al_2O_3 even after 200 h.

To investigate how the catalysts were influenced by the HF produced in decomposition process, the γ -Al₂O₃ and 10% Zn/Al₂O₃ were exposed to the HF and H₂O at 300–750 °C for 25 h and then characterized by XRD, BET and SEM.

As shown in Figures 2 and 3, the bare γ -Al₂O₃ and modified one (10% Zn/Al₂O₃) revealed big change in structure and morphology depending on the exposure temperature of HF. At 300 °C, considerable amount of AlF₃ was formed without change in morphology through the reaction 2 (Figures 2b, 3a-1, and 3b-1). However, at the temperatures higher than 400 °C the γ -Al₂O₃ and the modified 10% Zn/Al₂O₃ revealed complete different structures and morphologies. That is, the bare γ -Al₂O₃ was transformed to a crystalline AlF₃ at 500 °C and finally changed to a dense α -Al₂O₃ at 750 °C. However, different from the bare γ -Al₂O₃ spinel ZnAl₂O₄ phase was observed over the 10% Zn/Al₂O₃ at 750 °C with small amount of α -Al₂O₃. This result clearly indicates that the phase transformation suggested in Eq 4 is prohibited on the 10% Zn/Al₂O₃ by the formation of ZnAl₂O₄ resistant to the HF.

$$\gamma$$
-Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O $\rightarrow \alpha$ -Al₂O₃ + 6HF (4)

Also, the effect of Zn as a structure modifier could be seen clearly in the SEM analysis. When the irregular shaped porous γ -Al₂O₃ was exposed to the HF at 750 °C, it transformed to a disk-like crystalline α -phase. However, no change in morphology was observed over the 10% Zn/Al₂O₃ modified with Zn (Figures 3a-2 and 3b-2). Considering that the phase transformation of γ -Al₂O₃ into α -Al₂O₃ does not take place below 800 °C in conventional air atmosphere, it also could be speculated that the transformation of γ -Al₂O₃ to α -Al₂O₃ was mainly caused by the HF through the reaction 4.

Figure 2. XRD patterns of (A) γ -Al₂O₃ and (B) 10% Zn/Al₂O₃ exposed to HF and H₂O at different temperatures: (1) fresh catalysts, (2) 300, (3) 400, (4) 500, (5) 600, (6) 750 °C.

Figure 3. SEM images of (A) pure γ -Al₂O₃ and (B) 10% Zn/Al₂O₃ exposed to HF and H₂O at (1) 300 and (2) 750 °C for 25 h.

The γ -Al₂O₃ and 10% Zn/Al₂O₃ also showed difference in acidity after being exposed to the HF at high temperature. The acidities of catalysts before and after CF₄ decomposition reaction was compared using in situ FT-IR cell after pyridine adsorption (Figure 4). Both of the fresh γ -Al₂O₃ and 10% Zn/Al₂O₃ catalysts revealed strong Lewis acidity having peaks at 1450, 1577, and 1611 cm⁻¹ by the coordinatively adsorbed pyridine without any Brønsted acidity.^{12,13} However, most of the acid sites on the γ -Al₂O₃ disappeared after reaction for 24 h but considerable amount of acid sites still existed on the 10% Zn/Al₂O₃. This result means that the Lewis acid sites are closely related to

Figure 4. FT-IR spectra of (1) γ -Al₂O₃ and (2) 10% Zn/Al₂O₃ after pyridine adsorption: (A) before and (B) after hydrolytic decomposition of CF₄ at 750 °C for 24 h.

the decomposition activity of PFCs and the Zn played an important role to prohibit the phase transformation γ -Al₂O₃ into α -Al₂O₃.

Even though the Zn is an effective modifier to reduce the deactivation of γ -Al₂O₃ catalysts, the 10% Zn/Al₂O₃ catalyst deactivated gradually as the reaction proceeded. According to our recent result, aluminum phosphate was a more efficient modifier than the Zn to protect deactivation of γ -Al₂O₃-based catalyst (Figure 1(c), refer to the Ref. 11 for more details).

In conclusion, for the development of durable γ -Al₂O₃based catalyst for the hydrolytic decomposition of PFCs it is very important to find an effective structure modifier to protect catalytically active γ -Al₂O₃ from the phase transformation at high temperature and HF environment.

This research was supported by Center for Ultramicrochemical Process System sponsored by KOSEF.

References

- A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, *Science*, 259, 194 (1993).
- 2 W. T. Tsai, H. P. Chen, and W. Y. Hsien, J. Loss Prev. Process Ind., 15, 65 (2002).
- 3 W. B. Feaver and J. A. Rossin, Catal. Today, 54, 13 (1999).
- 4 Y. Takita, C. Morita, M. Ninomiya, H. Wakamatsu, H. Nishiguchi, and T. Ishihara, *Chem. Lett.*, **1999**, 417.
- 5 E. Vileno, M. K. LeClair, S. L. Suib, M. B. Cutlip, F. S. Galasso, and S. J. Hardwick, *Chem. Mater.*, 8, 1217 (1996).
- 6 S. Y. Lai, W. X. Pan, and C. F. Ng, Appl. Catal., B, 24, 207 (2000).
- 7 A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska, and Z. Karpinski, *Chem. Commun.*, 1999, 685.
- 8 Japanese patent 2001-293335 (2001).
- 9 Japanese patent 2001-224926 (2001).
- 10 M. M. Farris, A. A. Klinghoffer, J. A. Rossin, and D. E. Tevault, *Catal. Today*, **11**, 501 (1992).
- 11 J. Y. Jeon, X. F. Xu, M. H. Choi, H. Y. Kim, and Y. K. Park, *Chem. Commun.*, **2003**, 1244.
- 12 J. Navarrete, T. Lopez, and R. Gomez, *Langmuir*, **12**, 4385 (1996).
- 13 S. Damyanova, M. A. Centeno, L. Petrov, and P. Grange, Spectrochim. Acta, Part A, 57, 2495 (2001).